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Abstract:  Dot product is an advanced subject of applications in many areas. It is known that the dot product is 

inadequate for many applications. In this paper, we introduce a new type of dot product, Image Dot Product or Idot 

Product. In particular, an L-factor for the Idot product is introduced. We also investigate both the binary Idot product, 

and the Idot product. In addition, there are many open questions to be answered about the Idot product. 
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1. INTRODUCTION 

 

The dot product or scale product has unlimited applications in many areas. In the age of AI [3], however, for many 

computer applications, the dot product is inadequate. It will be necessary to extend the dot product. 

 

The classification problem [3] is to classify an unknown pattern into a set of classes. Given the following set of sample 

vectors, S = {s1, s2, s3}, where each sample is a 15-dimensition binary vector:  

 

011  111  111 

001  001  001 

s1 = 001 s2= 111 s3= 111 

001  100  001 

001  111  111 

 

They look like 3 images of 3-pixel by 5-pixel; furthermore, these are images of characters 1, 2, and 3. These three 

vectors form a sample vector set.  

 

Assuming another unknown vector, u1, is given: 

 

001  

001  

u1= 011  

001  

101. 

 

The question is to classify the unknown vector, u1, from the sample vector set, S = {s1, s2, s3}. In this particular 

example, the correct classification is that the unknown vector, u1, belongs to class, s1.  
 

There are three types of pixels: object, background, and noise. We will examine each pixel of a vector and each pixel is 

classified into {object, background, noise}. The noise pixel will appear randomly in the unknown patterns.  Let us look 

at the sample vector, s1: 

 

011  

001  

001  

001  

001. 

 

Note, this vector has 6 “object” pixels represented by “1”, 9 “background” pixels represented by “0”, and 0 “noise” 

pixels. Let us look at the unknown vector, u1: 
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001  

001  

011  

001  

101  

 

Note, this vector has 5 “object” pixels, 8 “background” pixels, and 2 “noise” pixels; if we remove the noise pixels, this 

vector will look like this: 

 

001  

001  

001  

001  

001 

 

In pixel matching, not all pixel pairs have an equal weight. It is the collection of the object pixels that determines the 

classification of the unknown vector. The background pixels play much smaller roles in determining the classification 

of an unknown vector. As a result, the object matching should have the highest weight: if an object pixel matches a 

corresponding object pixel, then this match should have the highest weight. The background match should have lower 

weight: if a background pixel matches a corresponding background pixel, then it should have a lower weight than the 

object pixel match. The mismatch should have the lowest weight: if an object pixel matches a background pixel, then it 

should produce the lowest contribution. 

 

Let us classify the unknown vector, u1, from the sample vectors, {s1, s2, s3}. We can have several classification 

algorithms, including classification by shortest distance (K-Means Clustering) [2,4,5,6] and classification by largest 

projection [1]. We will briefly look at both approaches to address several shortcoming of the dot product. 

 

Let us first look at the classification by minimum distance. This is a simple case of K-Means Clustering [2,4,5,6], 

where each sample vector is a cluster. The distance is the norm of (u1 – s1), (u1 – s2), (u1 – s3). The minimum distance 

will determine the classification of the given unknown vector. Let us look at (u1 – s1): 

 

011 001 0  1  0 

001 001 0  0  0 

001  -  011  =  0 -1  0 

001 001 0  0  0 

001 101 -1 0  0 

 

When an object pixel matches an object pixel, it contributes 1-1 = 0; and when a background pixel matches a 

background pixel, it contributes 0 – 0 = 0. The dot product cannot discriminate the difference. It gives too much weight 

to the background match. This overestimates the contribution of the background. 

 

Let us now look at the classification by maximum projection [6]:  (u1 ⋅ s1), (u1 ⋅ s2), (u1 ⋅ s3). The maximum projections 

will determine the classification of the given unknown vector. Let us look at (u1 ⋅ s1): 

 

011 001 0+0+1+ 

001 001 0+0+1+ 

001  ⋅ 011  =    0+0+1+   = 5 

001 001 0+0+1+ 

001 101 0+0+1 

 

When an object pixel matches an object pixel, it will contribute 1 ⋅ 1 = 1; and when a background pixel matches a 

background pixel, it contributes 0 ⋅ 0 = 0. When an object pixel matches a background pixel, it will contribute 1 ⋅ 0 = 0; 

and when a background pixel matches an object pixel, it contributes 0 ⋅ 1 = 0.  

 

Note, both the mismatch (1 ⋅ 0 = 0 ⋅ 1 = 0) and the correct background match (0 ⋅ 0 = 0) have the same weight. The dot 

product cannot take any contribution from the correct background matching. Although the correct background 

matching (0 ⋅ 0 = 0) is not as important as correct object matching (1 ⋅ 1 = 1), the dot product thinks it has the same 

weight as a mismatch (1 ⋅ 0 = 0 ⋅ 1 = 0). This underestimates the contribution of the background.  
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In both cases, the dot products are inadequate to complete the vector classification computation; an extension of the dot 

product will be necessary, which can distinguish three different types of pixel matches: 

 

 Object pixel vs object pixel 

 Background pixel vs background pixel 

 All other matches. 

 

In this paper, we make an attempt to extend the dot product by introducing a new type of dot product, Image Dot 

Product or Idot product. In particular, an L-factor is introduced. We first introduce the binary Idot product; then we 

introduce the Idot product. There are many open questions to be answered about the Idot product. 

 

2. BACKGROUND 

 

The definition of the dot product is well known. Below, we merely introduce the notations used for the rest of this 

paper.  

 

If  e1, ..., en are the standard basis vectors in Rn, then we can write: 

 

a    = [ a1   , … , an ] = ∑  ai  ei,  

b    = [ b1   , … , bn ] = ∑  bi  ei.      

 

Without loss of generality, assuming vectors, ei, are an orthonormal basis,  

 

ei   ⋅ ej   = δ i j  .    

 

Now  

a  ⋅ b  =  ∑  ai  bi . 

 

In particular, (1) if vector b is a unit vector, the dot product gives the projection of a vector, a, along the direction of 

vector, b; (2) The distance between a and b is the norm of ( a – b ). 

 

3. BINARY IDOT PRODUCT 

 

We will now introduce the binary Idot product. If  e1, ..., en are the standard basis vectors in Rn, then we can write: 

 

a    = [ a1   , … , an   ] = ∑  ai  ei      

b    = [ b1   , … , bn   ] = ∑  bi  ei      

 

Without loss of generality, assuming vectors, ei, are an orthonormal basis,  

 

ei   ⋅ ej   = δ i j  .    

 

Now, the Binary Idot product is defined as:  

 

a  ⋅ b  =  ∑  l i  (i, ai , bi ) 

 

Where  l i  (i, ai , bi ) is called a L-factor, which is a function of the index i, ai and bi. In this way, it can discriminate an 

object pixel from a background pixel. For a binary variable, x = 0, or 1, rewrite the variable as: 

 

   x = x (δx1+ δx0) . 

 

An object pixel, x, is identified by δ x1; and a background pixel is identified by δ x0.  We define the L-factor as follows: 

 

l i (i, x, y) = w11 (i) δ x1 δ y1   +  w10 (i) δ x1 δ y0   +  w01 (i) δ x0 δ y1  +   w00 (i)δ x0 δ y0    

 

If w11 (i), w10 (i) , …, depends on i, we call them local weights. If they are independent of i, we call them global 

weights. For the rest of this paper, for simplicity, we will deal with global weights only: 

 

l i (x, y) = w11  δ x1 δ y1   +  w10 δ x1 δ y0   +  w01 δ x0 δ y1  +   w00 δ x0 δ y0    
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This is an extension of the standard dot product as follows; rewrite the product of two variables, x and y, as: 

 

   xy  = (xδx1+ xδx0 )(yδy1+yδy0)  

 

   = x (δx0  δx1) (
1 0
0 1

) (
δy0
δy1

)y  

 

This product does not discriminate the background and object. Now, we can extent this product and define the L-

matrix: 

 

xy = (δx0  δx1) (
𝑤11 𝑤12
𝑤21 𝑤22

) (
δy0
δy1

). 

 

Here δ x1 δ y1   specifies the object pixel matches and w11(i) is its weight; δ x0 δ y0   specifies the background pixel 

matches and w00 (i) is its weight; and δ x1 δ y0 ,  δ x0 δ y1  specifies mismatches.  

 

Example. Define the L-factor: 

 

 l i (x, y) = 0.9  δ x1 δ y1   +  0.1  δ x0 δ y0   , 

 

while the missing weight means that they are 0. The Idot product is: 

 

  (1, 0, 1, 0)   ⋅  (1, 0, 0, 1) = 0.9 + 0.1 = 1. 

 

Example. Define the L-factor: 

 

 l i (x, y) = 1.0 δ x1 δ y1   - 0.1 δ x1 δ y0   - 0.1  δ x0 δ y1  +   0.2  δ x0 δ y0    

 

then 

 

  (1, 0, 1, 0)   ⋅  ( 1, 0, 0, 1) = 1 + 0.2 – 0.1 – 0.1 = 1. 

 

4.  IDOT PRODUCT 

 

In the last section, we introduced the binary Idot product. The advantage of binary numbers is that it classifies a pixel 

into two types: object (1) and background (0).  

 

To extend the Idot product beyond binary vectors, a threshold, T, will be needed to separate a pixel into two types: 

object (pixel >= T) and background (pixel < T).   

 

Define x as a step function of a pixel value:  

 

x ( pixel, T ) =   
    1,      𝑖𝑓 (pixel >=  𝑇) 

0,     𝑖𝑓 (pixel <  𝑇)
  

 

then we can extend the definition below: 

 

If  e1, ..., en are the standard basis vectors in Rn, then we can write: 

 

a    = [ a1   , … , an   ] = ∑  ai  ei      

b    = [ b1   , … , bn   ] = ∑  bi  ei      

 

Without loss of generality, assuming vectors, ei, are an orthonormal basis,  
 

ei   ⋅ ej   = δ i j  .    

 

Now the Idot product is defined as:  

 

a  ⋅ b  =  ∑  ai  bi  l i (ai , bi , T) 
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Where the L-factor  is:  

 

l i (ai , bi , T) = w11 δ x1 δ y1   +  w10 δ x1 δ y0   +  w01 δ x0 δ y1  +   w00 δ x0 δ y0    

 

where 

x =   
 1, 𝑖𝑓 ( ai >=  𝑇) 
0,     𝑖𝑓 (ai <  𝑇)

  

 

y =   
 1, 𝑖𝑓 (bi >=  𝑇) 
0,     𝑖𝑓 (bi <  𝑇)

  

 

There are numerous computer applications using the Idot product. The results are significantly better than the dot 

product. However, this topic will be beyond the scope of this paper. 

 

5. YET OTHER EXTENSIONS 

 

The above Idot definitions assumed that vectors are of the same dimension. Often the sample vector is smaller than the 

unknown vector, so this Idot product has to be extended. Continuing from the earlier example, an unknown vector 

could be: 

 

0010  

0010  

  B =  0110  

0010  

1010  

0000 

 

To compute the Idot product, a  ⋅ B, assume B has a set of  sub-vectors, B = { bk , k = 0, 1, 2, …}, that have the same 

dimension as vector, a.  

 

The Idot product can be defined as: 

 

 a  ⋅ B = max { a  ⋅ b k   },   bk  ϵ  B. 

 

This is one of many options and this definition emphasizes the maximum sub-vectors matches. There are numerous 

other alternatives to the above definitions, such as replacing the max in the above definition by sum, average, 

minimum, counting, … .  

 

6. OPEN QUESTION 

 

A natural question is: given a set of sample binary vectors and a set of classified binary vectors where the 

classifications are known, what is an algorithm to determine {w11, w10,  w01 , w00}? One can ask a similar question for a 

non-binary case, how to determine {w11, w10,  w01 , w00, T}? One can ask a similar question when the sample vector 

dimension is smaller than the unknown vectors. One can ask a similar question when the weights are local instead of 

global. 

 

7. CONCLUSION 

 

In this paper, we have illustrated why dot product is inadequate for many applications. We have introduced a new type 

of dot product, Image Dot Product or Idot product. In particular, an L-factor has been introduced. We have introduced 

both the binary Idot product and the Idot product. There are many open questions to be answered about weight 

inference for the Idot product. 
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